

RESEARCH UPDATE

CLINICALLY RELEVANT DENTAL RESEARCH

Welcome to *Compendium's* new Research Update section. Each month this section will feature new research published by the journal, as well as a selection of recent and/or seminal papers aggregated from the dental literature. Use the QR codes or links to access the full-text content to read the articles in their entirety and keep up to date on current, clinically relevant research across a range of specialties and practices.

INFECTION CONTROL

Virucidal Properties of Molecular Iodine Oral Rinse Against SARS-CoV-2

Teagle V, Clem DS, Yoon TY. Compend Contin Educ Dent. 2021;43(2):e5-e8.

ABSTRACT: *Background:* Saliva is an active carrier of SARS-CoV-2, and antimicrobial mouthrinses can be rendered less effective by saliva. Aerosol-generating procedures are commonplace in dentistry, and pre-procedural mouthrinses and/or irrigation with effective SARS-CoV-2 virucidals should be tested in the presence of saliva. *Methods:* With the use of an in vitro virucidal suspension test, molecular iodine oral rinse was assayed against SARS-CoV-2 with and without saliva after 30- and 60-second exposures to the rinse. Log_{10} infectivity and consequent virus reductions were calculated at each timepoint. *Results:* Virus load reductions with saliva were 4.75 log_{10} (>99.99% reduction) after 30 seconds of exposure and \geq 5.25 log_{10} (>99.99% reduction) after 60 seconds. Without saliva, infectivity was reduced by 5.00 log_{10} (>99.99% reduction) and \geq 5.75 log_{10} (>99.99% reduction) after 30 and 60 seconds, respectively. *Conclusions:* Molecular iodine oral rinse appears effective in reducing SARS-CoV-2 infectivity in vitro and, to date, appears to be the most effective oral rinse tested both in the presence of and without human saliva.

Virucidal Activity of Commercial Antimicrobials		
Primary Active Ingredient	60-Second Log ₁₀ Reduction NO SALIVA PRESENT	60-Second Log ₁₀ Reduction SALIVA PRESENT
0.01 % (100 ppm) molecular iodine†	≥5.25	≥5.75
3.8% "foaming" hydrogen peroxide*	≥3.35	Not tested
0.2% povidone iodine*	3.0	Not tested
0.12% chlorhexidine gluconate*‡	1.0	Not tested
1.5% hydrogen peroxide*‡	<1.0	Not tested

 $[\]label{lem:condition} "hydrogen peroxide results from Biochem Laboratory, Round Rock, Texas; tested against coronavirus, not SARS-CoV-2. Povidone iodine, chlorhexidine gluconate, and 1.5% hydrogen peroxide results from Utah State University Institute for Antiviral Research, Logan, Utah.$

https://qrco.de/bceEms

[‡] Chlorhexidine and 1.5% hydrogen peroxide provide low virucidal activity

⁽Adapted with permission from Ref. 13, Clinicians Report, April 2021, Vol 14[4])